Preparedness of Tanza National Trade School Senior High School Students on Work Immersion: Input to the Manual for Senior High School Work Immersion

Crescencia Tarinay Canubas
crescencia.canubas@deped.gov.ph

Abstract: The study entitled “Preparedness of Tanza National Trade School Senior High School Students on Work Immersion: Input To The Manual For Senior High School Work Immersion” aims to develop a Student Manual on Work Immersion for the Tanza National Trade School Senior High School Students. Specifically, this study will answer the following research questions: 1. What is the profile of the students involved in the study?; 2. What is the status of the industrial skills provided by Tanza National Trade School to the senior high school students in the technical-vocational courses in terms of the following: 1.1 Administrative Support 1.2 Student preparation; Knowledge; Skills; and Attitudes? 3. What Student Manual of Immersion could be prepared for the Tanza National Trade School? 4. What are the problems encountered in the preparation of the senior high school students of Tanza National Trade School for the industry/work immersion. The study uses descriptive design using survey method to determine the readiness of the students in the different field of specialization. The results or findings of the study are used as bases in the development for the work immersion manual. The overall perception of the students from different specialized courses towards industry immersion is that, majority of the students indicate that they are moderately ready for industry/work immersion as perceived by 61.92% of the respondents. The findings on the attitudes and values readiness of the Senior High School Students of Tanza National Trade School indicate that the value of patience ranked first followed by the attitude of having good common sense, the third is good listening skills; the fourth is the attitude of passion for improvement and the fifth is the attitude of having the desire to continue learning or to learn new skills. Relative to the skill preparation of the students, majority of the students indicated that the school have prepared them for the work immersion. They have competent teachers to teach them on the different skills needed in the industry. The schools' preparation for the Senior High School Work Immersion that is integrated on classroom instruction contributes to the creation of better systems for skills development. The school also provides progressive discipline plans for students by creating a safe educational environment at the same time stimulates learning and enhance decision-making process for the senior high school students. Based on the findings of the study the following recommendations are suggested: 1. Since the overall perception of the students is that they are moderately ready for the work immersion, the school must intensify the preparation of the different skills by hiring competent teachers or by sending them to intense training in the different industries. 2. Skills training on ABM (BF); ABM (BM); Animation; Automotive Servicing (A); Computer Programming (A); Computer Programming (B); Electronic Product Assembly and Servicing (EPAS) and Shielded Metal Arc Welding -SMAW (B) must be improved. 3. The school finance management must provide additional budget on the growth, development and training of different skills. Manual was developed as guide for teachers and students in the preparation for industry/work immersion which is the output of the study.

Keywords: cognitive, learning outcomes, skill-based, status, technical-vocational education

Introduction: Work immersion is a component of the Senior High School (SHS) Curriculum with a minimum of 80 to a maximum of 240 hours of hands-on experience or work simulation. This is to expose the Grade 11 and 12 students to the actual workplace setting and enrichment on competencies basically provided by the school through the supervision of the School Head and the designated personnel of the Partner. Immersion is done outside the school campus in a “Workplace Immersion Venue,” defined as the place where work immersion of students is done. Examples of work immersion venues include offices, factories, shops and project sites. What could lead to confusion is that the word “immersion” actually has two meanings in K to 12. The first meaning refers to a required SHS subject in the curriculum. The second is
a preferred mode of delivery of Tech-Voc subjects. Immersion is one of the four options of the “Work Immersion/Research/Career/Advocacy/ Culminating Activity” (WRCC). In the Academic Track, WRCC is the ninth required specialized subject in the Accountancy, Business and Management (ABM), Humanities and Social Sciences (HUMSS), and Science, Technology, Engineering, and Mathematics (STEM) strands. WRCC is not listed in the General Academic Strand (GAS). However, two electives may be taken from the other strands hence, these may be required also by some schools. In the Sports Track, WRCC is a required specialized subject where “Apprenticeship (off-campus)” is an example. RA 1826 (National Apprenticeship Act of 1957) provides that an apprentice is “a worker of at least 16 years of age who is covered by a written apprenticeship agreement with an employer, an association of employers, or an apprenticeship committee registered with the Apprenticeship Division, which contract provides for not less than two thousand hours of reasonably continuous employment for such worker and for his participation in an approved schedule of work experience through employment and supplemented by related classroom instruction. No person shall work or be engaged as apprentice unless he is at least 16 years of age, has completed the high school course or such course or courses as the Secretary of Labor may prescribe.” Apprentice cannot be used within the Sports track. First, the apprentice must have completed high school and at the same time, the apprentice must render at least 2,000 hours. Its 80 hour requirement is completed two weeks within the school year, Monday to Friday. WRCC is a required specialized subject in the Arts and Design Track. In this track, there is another required specialized subject called “Apprenticeship and Exploration of Different Arts Fields”. Immersion as a subject and as an option for WRCC is limited to at most 80 hours. For schools that have decided to use immersion, DepEd Order No. 40 outlines the procedures. Immersion in K to 12 refers to a mode of delivery of Tech-Voc subjects. Here, it is not limited to 80 hours. In fact, the TVL curriculum posted on the DepEd website specifies that immersion should take at least 640 hours. In the US, for example, a “Fine Arts Apprenticeship Program provides specialized experiences beyond the regular art, music and drama curricula for selected high school students (rising 10th, 11th, or 12th graders). Opportunities for students may include ensemble works, master classes, attendance at professional rehearsals and performances, museum courses, small group instruction, seminars, exhibit and performance opportunities.” In the UK, there are apprenticeships for new media namely, animation assistant, archive assistant, broadcast assistant, junior designer, production runner and digital assistant. In the Arts and Design track “apprentice” has been adopted since its use has a longer history in the arts than it does in our laws. In Tanza National High School, the 1st batch (1,057) senior high school students of school year 2017-2018 are to take up industry immersion as a subject. The school offers technical/vocational courses such as Computer Programming, Animation, Automotive Servicing, Electronic Products Assembly & Servicing, Electrical Installation & Maintenance, Food and Beverage Services, Bread and Pastry Production, Shielded Metal Arc Welding, Tailoring, Hairdressing. Due to the necessity and urgency of the implementation of the industry immersion program effective the said school year and the mandate for the different tracks for apprenticeship, this survey is conducted. This study aims to prepare a Student Manual of Immersion for the Tanza National Trade School senior high school students. Specifically, this study will answer the following research questions:

1. What is the profile of the students involved in the study?
2. What is the status of the industrial skills provided by Tanza National Trade School to the senior high school students in the technical-vocational courses in terms of the following:
 1.1 Administrative Support
 1.2 Student preparation:
 1.2.1 Knowledge;
 1.2.2 Skills; and
 1.2.3 Attitudes?
3. What are the problems encountered in the preparation for Industry Immersion of the senior high school students or the in terms of the Tanza National Trade School?

Review of Literature: Knowledge acquisition typically refers to the process of acquiring, processing, understanding, and recalling information through one
of a number of methods. This is often a field of study closely tied to cognition, memory, and the way in which human beings are able to understand the world around them. While no single theory has been thoroughly proven or universally accepted, many theories regarding the acquisition of knowledge contain similarities that can be considered basic aspects of the process. Knowledge acquisition typically details how people experience new information, how that information is stored in the brain, and how that information can be recalled for later use. One of the primary components of knowledge acquisition is the supposition that people are born without knowledge, and that it is gained during a person's lifetime. This is often utilized in tandem with the idea of a person as a tabula rasa or “blank slate.” Some approaches to knowledge acquisition have been built upon the idea that people have a predisposition toward knowledge or are born with certain values or knowledge already in place. The “blank slate” approach regards humans as essentially empty of knowledge upon birth, and that new information is acquired and utilized throughout a person's life. Knowledge acquisition typically begins with the process of receiving or acquiring new information. This is usually done through visual, aural, and tactile signals that a person receives through his or her senses. When a person first sees a dog, for example, he or she is receiving the information about what a dog looks like. Knowledge is acquired that indicates a dog generally has four legs, is covered with fur, and has a tail. Once information is received, knowledge acquisition typically continues through encoding and understanding that information. This encoding process allows a person to build a cognitive model, sometimes called a schema, for a piece of information. The schema for a dog, continuing the above example, incorporates the received information to build an overall sense of what constitutes “dogness.” When a person sees another animal, such as a kangaroo, he or she processes the new information, sees that it does not fit the schema of a dog, and then creates a new model for that new knowledge. Knowledge acquisition then continues with the ability to effectively recall and alter stored information. When someone sees a dog again, he or she is able to recognize it as a dog by recalling the schema for “dog” and seeing that it fits into that model. This can create cognitive dissonance when someone encounters an object that exists within a certain schema, but which does not match certain aspects of that model. This entire process of knowledge acquisition usually continues throughout a person's life. It may be most intense, however, during the early years of life as someone is rapidly creating and altering schemata based on millions of different pieces of information. (G. Wiesen: 2017) Skills Acquisition Training Programme is an adult education programme which is designed to impart various skills on the participants, and meet immediate needs such as jobs, self-reliance and curb restiveness among youths. This is a training programme that empowers participants to acquire skills in the area of electronics, masonry, carpentry, electricity wiring/installation, hair dressing, barbering, driving, vehicle repair and maintenance, plumbing, fittings, mobile phone repair, computers repair and appreciation among others. The objectives of skills acquisition programme of Shell Petroleum Development Company (SPDC) which was established in 2002 in old Rivers State are to: 1. enable the participants acquire necessary skills for self-employment, 2. enable the youth in the host community be eligible for employment, 3. expose the youth to enterprise management and leadership training, 4. prepare them for future challenges of self-employment, and 5. help the youth acquire vocational skills which will make them self-reliant Entrepreneur. While that of the Niger Delta Development Commission (NDDC) started her skills training programme in 2006 in Rivers State. The objectives of the programme were as follows: 1. to eradicate poverty in the region, 2. train youths in vocational skills in various trades such as fishing, welding, automobile and river craft repair etc, 3. produce or create pool of skilled tradesmen (boost the local content of the oil industry and at the same time encourage self-reliance and entrepreneurship among the youth. (Aniete, 2006) The industry work environment has changed dramatically during the last two decades. Skills needed in industry today are very different from those needed in the academe. It includes a high level of technical aptitude, multiple professional competencies, an interdisciplinary, highly flexible, and collaborative attitude, and a globally oriented perspective. Coming from a traditional university training, graduating students face a highly challenging work environment when they enter industry careers. The university education is
typically acquired through content-oriented classroom lectures and hands-on laboratory work. It promotes the students’ analytical and individual skill sets and their ability to compete. Students gain a sharply defined amount of understanding in discrete topics, often in a non-integrative manner. Industry needs a workforce with skills that both include the academic background and extend it. Prospective employees need to learn about industry-relevant topics, to understand and be able to operate in a context-oriented manner, to think innovatively, and to develop and utilize good communication and interpersonal skills through teamwork and networking. In order to create employer-relevant education it is essential to become knowledgeable about the employers’ needs. An effective way to identify immediate training needs is to survey professional employers regarding which skills graduates should have in order to obtain employment. Another method is the creation of an inventory map of employers, their fields of expertise, technology, market, size, and predicted growth in a particular area. Using a compilation of these methods, a list of highly desirable skills for graduate-level employees has been assembled. Many of these represent a large challenge for universities, and effective training in these areas often requires a high level of interaction with professionals. This interaction can take many forms including internships, guest instruction on projects/case studies, guest lectures, and mentoring. Students can learn through on-the-job training or internships, but the demand far exceeds the number of available opportunities. For instance, in a 2012 survey done by Mona Mourshed, Diana Farrell and Dominic Barton for the McKinsey Center of Government (2012), 58% of the young respondents believed that practical, hands-on learning was an effective approach. Industry immersion exposes students to actual, real-time workplace situations where actions have palpable consequences other than passing or failing grades. Consider then what a well-planned industry immersion program for faculty would mean. Teachers who have practical and up-to-date industry experience in their field of study will most certainly interact more authoritatively with their students. In turn, their students will come away with relevant knowledge and useful competencies. More importantly, a teacher’s extended industry exposure will enable him or her to accurately describe and demonstrate the kind of work ethic that one needs to succeed in the modern workplace. Far Eastern University Institute of Technology, as stated by Dr. Mike Alba (2010) that faculty immersion program is being implemented by the school which “aims to provide faculty members, especially those who have not had actual industry experience, an opportunity to work with FEU’s industry partners” such as IBM, PLDT, iWave, Micrologic, Impact Solutions and Health Solutions. Through the program, faculty members are able to arrive at a concrete understanding and appreciation of the expectations and demands of industry from professionals, and they can therefore prepare and equip the students accordingly. Likewise, the program serves as an avenue by which the faculty can evaluate their competencies in the industry, after which necessary support from the institute can be solicited to address any need for additional training. The FEU Institute of Technology takes pride in its pool of academicians with relevant industry experience who can effectively teach its industry-driven curricula. It aims to inject a corporate culture in an academic setting so as to afford its students the best simulation of what they can expect when they enter the industry. In 2012, Orange & Bronze (O&B) Software Labs designed an eight-week faculty immersion program for computer science professors of the Mindanao State University Iligan Institute of Technology (MSU IIT). The aim was to provide them with first-hand experience in Java software development and a front-row seat to the inner workings of a cutting-edge software development company. O&B is affiliated with the Philippine Software Industry Association and the IT & Business Process Association of the Philippines (Ibpap). “Corporations like ours have a huge stake in developing the skills of the youth,” remarked O&B cofounder and CEO Calen Legaspi. “In our case, we devote some of our resources to community programs that aim to enhance and improve the knowledge of our future IT professionals.” One of the program’s founders, Mike Alba (2010) said: “I have learned that what we teach in school is quite the opposite of what is practiced in the industry. It is evident that teachers like me lack first-hand experience.” Industry immersion for teachers is really nothing new. But if there are few good programs for students, there are quite a number of faculty development opportunities. Industry immersion included—available for teachers in higher education.
Institutions. However, based on data from the Commission on Higher Education (CHED), the main constraints preventing faculty from completing further studies are heavy teaching loads, being recalled by their home institutions, and low stipends. The nationwide implementation of K-to-12 in 2016 accentuates the problem of drastically reduced college enrollment, which leads to decreased teaching load and displaced teaching staff. This translates to reduced income for faculty and threatens the viability of higher education institutions themselves. But through its transition program, CHED sees K-to-12 as "a once-in-a-generation opportunity to change the country's entire education landscape and to bring the Philippines up to par with our neighbors in the ASEAN region, and into the 21st century." The K-to-12 Transition Program aims to mitigate the adverse impact of the transition and leverage the opportunity to upgrade Philippine higher education. It has a proposed budget of P8 billion, which comes from the CHED budget. Faculty development has a P3-billion allocation. Higher education employees with reduced workload can now engage in various activities—including industry immersion—to develop relevant skills and content knowledge related to the field where they teach or work. For this to work, industry must identify the gaps among fresh graduates entering the workforce and provide input for curriculum design. Furthermore, the appropriate training modules must be worked on collaboratively with the academe. On the bases of this related literature the researcher, motivated to conduct this study in order to determine the gap between what is taught in Tanza National Trade School on the needed skill by the industry, and does the school provide appropriate skill training or inputs on SHS Students that industry can tap as future workers.

Conceptual Framework :- Status a person’s social position or standing relative to that of others. Status Inconsistency: Status Inconsistency occurs when an individual’s social position are varied and these variations influence his or her overall social status. Status inconsistency is a situation Where an individual's social positions have an individual's social positions, have both positive and negative influences on his or her social status. For example, a teacher may have a positive societal image (respect, prestige, etc.), which increases her status but she may earn little money, which simultaneously decreases her status. Sociologists investigate issues of status inconsistency in order to better understand status systems and stratification, and because some sociologists believe that positions of status inconsistency might have strong effects on people's behavior. Gerhard Lenski originally predicted that people suffering from status inconsistency would favour political actions and parties directed against higher status groups.

Differences in Status: Social status refers to the relative rank or standing that an individual has in the eyes of others. There are two elements of social status—those attributes we are born with and those we achieve. Status differences can create a bias against those with the perceived lower status. Outsider status can also be a challenge in communication. In the military and other organizations, the status of members affects communication. In the military and other organization, the status of members affects communication.

Social Status: however there is any form of society, one sees social status come into play. One's social status is determined in different ways. One can earn his or her social status by his or her own achievements; this is known as achieved status. Social status is most often understood as a melding of the two types of status, with ascribed status influencing ascribed status influencing achieved status. Admission, therefore, is an achieved status that was heavily influenced by resources made available by the person's ascribed status. Industry Immersion Learning Real-Life Industry Case-Studies in Biotechnology And Business Students are often surprised about the differences between the university and Industry work environments when adjusting to their first job in the biotechnology and pharmaceutical industry. This book aims to facilitate the transition from university to industry by presenting real-life study cases that span a broad range of important topics. Amongst these are examples of innovation, management or optimization of products, processes, and intellectual property. Many university teachers are also unfamiliar with the industry environment. This book provides guidance on how to approach industry employers and create educational alliances. The strategy of establishing contact to industry employers and the process of developing...
study cases are outlined. Each study includes a description of the topic, mission and goals, learning outcomes, study plan, student deliverables, and teacher's instructional materials. Few textbooks are available that contain hands-on training for students aiming to work in industry and instructions for university teachers interested in collaborating with industry. This book is ideal for professional science and MBA students, as well as university teachers and industry professionals.

Technical-Vocational Education Overview:

Technical Vocational Initiative (TVI) The government of Manitoba recognized the Pressing need to address socio-economic changes, labour market needs, and the ability of Manitoba youth to compete in a global economy. Consequently, in 2004, the Technical Vocational Initiative (TVI) was formed with the goal “to offer Manitobans a comprehensive continuum of technical vocational education pathways that is universally accessible, seamless across education levels, and synchronized with labour market needs”. The TVI mandate was predicated on six Pillars of Action designed to revitalize technical vocational education in Manitoba: 1. Improve the image of technical vocational careers. 2. Enhance awareness of technical vocational programming. 3. Ensure programming relevance to labour market needs. 4. Facilitate programming articulation between high schools and colleges. 5. Develop strategies to address technical vocational teacher currency and shortage issues. 6. Increase funding to support technical vocational equipment upgrades. Based on the Pillars of Action, TVI was engaged in developing an articulated, outcomes-driven Approach for skilled trades education that leads to increased student enrolment, graduation, and transition rates from high school to technical vocational programs and increased employment in technical vocational careers. In 2012, the Technical Vocational Education Unit (TVEU) was formed as a permanent unit within the Instruction, Curriculum and Assessment Branch of Manitoba Education. TVEU has taken over the responsibilities that previously belonged to TVI. TVEU and Curriculum Revitalization/Review Curriculum renewal has two main purposes: 1. Review and revise existing technical vocational curricula so as to be current, engaging for the learner, and relevant to labour market needs, and create new curricula as needed. This involved establishing a meaningful dialogue with industry, business, and Technical-Vocational Education Overview 5 labour to ensure that the curricula met the above objectives. The inclusion of innovative approaches, sustainable practices, and technology into programming were also important considerations in the process. 2. Facilitate the dialogue and processes necessary to increase programming mobility and articulation among all levels of Manitoba’s education system. Through a curriculum review process involving input from stakeholders, courses and programming are being revised, created, or deleted in order to promote currency and relevance to industry standards and address current labour market needs in Manitoba. The review process was also cognizant of contemporary workforce requirements, sustainable practices, global competitive forces, and the need for programming and courses to fit into the desired, seamless educational pathway. In order to facilitate interactivity and allow for rapid, ongoing response to changes, curriculum is available online, not in print. Technology Education Program To graduate from a Senior Years Technology Education Program, students must fulfill the graduation requirements outlined by Manitoba Education and complete a minimum of eight credits from an approved cluster of technology education courses. Unit credit funding encourages schools to provide programming comprising courses from different clusters of vocational subject areas, in addition to teaching courses from a specific cluster. This allows curriculum to be adapted to meet the local conditions or regional needs. High School Apprenticeship Program (HSAP) The High School Apprenticeship Program (HSAP) falls within the Senior Years Technology Education Program. In Manitoba, apprenticeship training, including HSAP, is administered by Apprenticeship Manitoba. Apprenticeship is a training relationship involving a trainee (known as an apprentice), an employer, and Apprenticeship Manitoba. An employer hires an apprentice to meet an existing or projected skill need. A contractual arrangement, known as indentureship, is established among the employer, the apprentice, and Apprenticeship Manitoba. Students can receive up to eight credits from HSAP towards graduation. In some instances, in an accredited secondary apprenticeship program, students who complete both the Senior Years...
Technology Education Program requirements and HSAP can receive their full Level 1 status upon graduation. More information on HSAP can be found on the Apprenticeship Manitoba website at . Technology Education Program requirements and HSAP can receive their full Level 1 status upon graduation. More information on HSAP can be found on the Apprenticeship Manitoba website at .

Curriculum Framework and Implementation To ensure credibility and relevance of content and processes, the specific programming and course learning outcomes included in these documents were determined through a collaborative, consensus-building model with relevant stakeholders. Working development teams were established that consisted of representatives from stakeholder groups including, whenever relevant, 6 Technical-Vocational Education Overview technical-vocational schools, industrial arts programs, Apprenticeship Manitoba, community colleges, industry, and industry associations. The intention of this collaboration with stakeholders is to revise and develop curriculum that will facilitate articulation opportunities for students. Strands in Technical-Vocational Curriculum The general and specific learning outcomes for each course belong to three distinct but related strands. As students move from Grades 9 to 12, the expectations within each strand will increase in complexity and depth and will move the students from sampling to transition to work or post-secondary education. Technology Education Program requirements and HSAP can receive their full Level 1 status upon graduation. More information on HSAP can be found on the Apprenticeship Manitoba website at .

Implementation model for technical-vocational education provides for nine credits from Grades 9 to 12. The Grade 9 credit is optional, depending on local school resources. The eight courses developed from Grades 10 to 12 form the foundation courses within the specific cluster. Sampling Exploration Specialization Transition Vocational (minimum of 8 core courses) Grade 9 ½ or 1 Credit Grade 10 1 Credit Grade 11 3 Credits Grade 12 4 Credits Technical-Vocational Education Overview 7 Grade 9: Sampling The curriculum in Grade 9 will be designed in a flexible model to support sampling. The course can be offered as a half or full credit based on local school resources and requirements. Grade 10: Exploration Students will explore the specific technology area. Students are encouraged to explore various technical vocational areas. Grade 11: Specialization Students will specialize within the technical-vocational subject area of their choice. The learning outcomes will be linked to post-secondary training or apprenticeship.

Learning: Knowledge, Skills, and Attitudes KSA are the abilities and characteristics that enable a job holder to accomplish the activities described in a task statement that describes what the job holder does (Quinones, Ehrenstein, 1997). In a learning environment, cognitive, psychomotor, & affective are KSA's counterparts that identify end states of training (objectives).

Learning Outcome Typology (Kraiger, et al., 1993)

Cognitive (knowledge):
Verbal Knowledge – factual and declarative knowledge (propositional knowledge). Knowledge Organization - how information and concepts are mentally arranged. Metacognitive Strategies - allocation and regulation of cognitive resources.

Skill-Based (psychomotor):
Compilation - routine development and procedure linkage. Automaticity - ability to perform a task without Conscious monitoring and with other tasks.

Affective (attitudes): Attitude - attitude about learning, self-efficacy, perception about ability to perform, and goal setting. Motivation - motivational disposition.

Learning Outcomes: Most often we view results as the final outcome of an intervention that can easily be
measured, such as reduced costs, customer satisfaction, improved quality, etc. However, often the results are going to be internal to the targeted individuals. These are known as learning outcomes or personal results. Kraiger, et. al. (1993) proposed that learning during training may be classified into one of three types of outcomes: cognitive, skill-based, and affective. In addition, each type of outcome includes particular categories and foci of measurement (the focus is on two points):

Pragmatism: The study is based on pragmatic theory. Pragmatism is an educational philosophy that says that education should be about life and growth. That is, teachers should be teaching students things that are practical for life and encourage them to grow into better people. Many famous educators, including John Dewey, were pragmatists. Pragmatism means action. This evolved from the words practical and practice. Educative experiences in life depend upon two things. Thought and Action: The emphasis of pragmatism is on action rather than on thought. Thought is subordinated to action. It is made an instrument to find suitable means for action. It makes learning purposeful and infuses a sense of reality in education. It makes schools into workshops and laboratories. It gives an experimental character to education. Pragmatism makes man optimistic, energetic and active. It gives him self-confidence. Pragmatism is based on the psychology of individual differences. Pragmatists want education according to aptitudes and abilities of the individual. Individual must be respected and education planned to cater to his inclinations and capacities. But individual development must take place in social context. Every individual has a social self and an individuality can best be developed in and through society. Education is preparation for life. Pragmatism makes a man socially efficient. The pragmatists are of the opinion that the children should not be asked to work according to predetermined goals. They should determine their goals according to their needs and interests. Teaching-learning process is a social and bi-polar process. Learning takes place as an interaction between the teacher and the taught. While idealism gives first place to the teacher, pragmatism gives the first place to the taught. Similarly, between thought and action, they give first place to action. The pragmatists decry verbalism and encourage action. Today pragmatism occupies the most dominant place in the United States of America. According to pragmatism the theory and practice of education is based on two main principles, viz: (i) Education should have a social function, and (ii) Education should provide real-life experience to the students. The only aim of education, according to pragmatism, is to enable the child to create values in his life. In the words of Ross, education must create new values: “the main task of educator is to put the educand into a position to develop values for himself. The pragmatist educator aims at the harmonious development of the educand — physical, intellectual, social and aesthetic. The aim of education, therefore, is to direct “the impulses, interests, desires and abilities towards the satisfaction of the felt wants of the child in his environment.” Since the pragmatists believe that man is primarily a biological and social organism, education should aim at the development of social efficiency in man. Every child should be an effective member of the society. Education must fulfill his own needs as well as the needs of the society. The pragmatic aim of education is to prepare the child for a successful and well-adjusted life. He must be fully adjusted to his environment. The pragmatists hold the view that the students should acquire that knowledge which is helpful to them in solving the present-day problems. They should learn only those skills which are useful to them in practical life.

According to pragmatism, all education is “learning by doing”. So it must be based on the child’s experiences as well as occupations and activities. Besides the school subjects, free, purposive and socialized activities should be in the curriculum. To the pragmatist — “education is not so much teaching the child things he ought to know, as encouraging him to learn for himself through experimental and creative activity”. Learning by doing makes a person creative, confident and cooperative. The pragmatic method is socialistic in nature. His learning should be
thoroughly purposive. He should learn to fulfill the purpose of his life. The method employed by the pragmatist teacher is experimental. The pupil is required to discover the truth for himself. To facilitate this discovery, the application of the inductive and heuristic methods of teaching is necessary. Experiences should, therefore, be planned to arouse the curiosity of children to acquire knowledge. The business of the teacher, therefore, is to teach his pupils to do rather than to know, to discover for themselves rather than to collect dry information. It is the business of the teacher to arouse “interest” in children. Interest is a watchword in pragmatic education. The school is the representative of the greater community. It is a society in miniature. Therefore, the school has to provide for all those activities which constitute the normal life of the community. It has to provide for the socialised, free and purposive activities. These activities provide the pupils a very useful training in citizenship. Partnerships/Work Immersion shall be governed by existing laws and DepEd issuances such as, but not limited to, the following: a. Child Protection Policy b. Anti-Bullying Act c. Act Declaring Sexual Harassment Unlawful in the Employment, Education or Training Environment, for Other Purposes; d. Prohibition of cooperation or partnership with the tobacco industry in all areas of the country e. Strengthening the integration of breastfeeding education in the curriculum, setting up and sustaining the operation of lactation stations f. Executive Order No. 51, school officials are discouraged from partnering with companies manufacturing milk and infant formula products; g. Adopt-A-School Act of 1998 (amount of donation equivalent to 150% is deducted from the Taxable Income) h. Relevant labor laws and issuances in the fields of internships, apprenticeship, on-the-job training (OJT), and others i. Article 218 and 219 of the Family Code, on the special parental authority and responsibility of schools, administrators and teachers. Work immersion is one of the course requirements for graduation. A Senior High School student has to undergo work immersion in a business organization/establishment whose work requirements are related to the specialization. Through work immersion, the students are exposed to and become familiarized with work related environment related to their field of specialization. Specifically, the students are able to: (i) gain relevant and practical industrial skills under the guidance of industry experts and workers; (ii) appreciate the importance and application of the principles and theories taught in the school; (iii) enhance their technical knowledge and skills; and (iv) prepare them to meet the needs and challenges of employment or higher education after their graduation. Anchored to the above concepts and theories, the proponent was able to draw the conceptual framework indicated below:

Methodology: Research Design: This study is a descriptive - action research designed to find out the preparedness/ readiness of the Senior High School students of Tanza National Trade School on industry immersion. Descriptive research is a study designed to depict the participants in an accurate way. It is used to describe characteristics of a population or phenomenon being studied. It does not answer questions about how/when/why the characteristics occurred. Rather it addresses the “what”. The characteristics used to describe the situation or population are usually some kind of categorical scheme also known as descriptive categories.

Sampling Technique: The researcher used the total sampling random sampling determined by the Sloven formula of the 1057 senior High School Students at Tanza National Trade School, 635 were chosen.

Instrumentation: The researcher prepared a four-part survey questionnaire as follows: Part I - profile of the students; Part 2 - status of knowledge; Part 3 status of
skill; and Part 4 - status of attitudes. The prepared questionnaire was presented for expert validation by the Master Teachers and administered to 10 non-resident students who have had training on the specific skills for its 0.87 reliability (Spearman Rank-Order Correlation).

Data Gathering Procedure: A letter of request was forwarded to the School Division Superintendent and the Principal of Tanza National Trade School asking permission to conduct the study. Upon approval, the researcher personally administered the survey questionnaire to the identified subjects of the study.

Statistical Treatment: The data collected have been subjected to appropriate statistical treatment using frequency, percentage distribution, ranking and weighted mean.

Results and Discussion:-

Findings: This section presents the results and discussion of the data collected from the instrument.

Profile of Students: The age distribution of the students. As shown in the table 1, a total of 67 ABM students, 39 students on HUMMS, 32 students on animation, 33 students on automotive servicing, 68 students on Bread and Pastry Production (BPP), 35 on Electrical Installation and Maintenance (EIM), 35 students taking up Electronic Products Assembly and servicing (EPAS), 38 students on Food and Beverage (FBS), 89 students on Shielded Metal Arc Welding (SMAW) and 16 on Tailoring with a total of 625 students on the different specialization served as respondents. The sex distribution of the students, as shown on the table there were 366 female and 259 male students from the different field of specialization.

Students’ Status of Preparedness:-

Table 3. Readiness of Students For Work Immersion:

<table>
<thead>
<tr>
<th>Readiness</th>
<th>Frequency</th>
<th>%</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Ready</td>
<td>0</td>
<td>0</td>
<td>4.5</td>
</tr>
<tr>
<td>Very Much Ready</td>
<td>121</td>
<td>19.36</td>
<td>2</td>
</tr>
<tr>
<td>Moderately Ready</td>
<td>387</td>
<td>61.92</td>
<td>1</td>
</tr>
<tr>
<td>Slightly Ready</td>
<td>117</td>
<td>18.72</td>
<td>3</td>
</tr>
<tr>
<td>Not Ready</td>
<td>0</td>
<td>0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Total: 625

The status of preparedness of the students towards work immersion includes knowledge, skills and attitudes. Table 3 presents the overall perception of the students from different specialized courses towards work immersion. As shown in the table, majority of the students indicated that they were moderately ready for industry immersion which were perceived by 387 students or 61.92%. 121 or 19.36% indicated they were very much ready, while 117 students or 18.72% indicated that they were Slightly Ready for work immersion.

Table 4 Attitude and Values of Preparedness of Students
The attitude and values readiness of the students of Tanza National Trade School. As shown in the table, the value of being patient ranked first with frequency of 502 out of 625 or 80.19%. It is followed by the attitude of having good common sense which obtained a frequency of 498 or 79.55%. The third in rank is good listening skills which earned a frequency of 476 or 76.16%, while rank four is the attitude of passion for improvement with a frequency of 473 or 75.68%, while the fifth is the attitude of continuous desire to learn which earned a frequency of 454 or 72.52% On the other hand the least in rank were the attitudes of having an inquisitive mind; technical competency; excellent communication/salesmanship and good math skills. This is because these attitudes can be developed as they go along with the job. The skills readiness/preparedness of students towards work immersion. As presented in the table, the ABM Business Finance (BF) students indicated that there is a professional trainer for every skill who led them to be very much ready in their field of chosen specialization. But with regards of having a well-designed training program, it is indicated that they are slightly ready, particularly on the different skills needed by the industry. The rest of the 10 items skills training factors were perceived by the ABM senior high school students as moderately ready such as: the school has supports and services for the students on the different field of specialization related to industry; there is sufficient funding for the school to be able to develop programs for industry/work immersion; the school prepared the students for a lifelong learning; the school has appropriate facilities and aids used in teaching the different skills; the students have strong time management skills; school's preparation contributes to the creation of better systems for skills development; provide progressive discipline plans for students by creating a safe educational environment; and stimulates learning and enhances decision-making process for the senior high school students. It is slightly ready because the school lacks professional trainer for every skill. The animation students indicated that they were only moderately ready for the industry/work immersion. For the Automotive Servicing students indicated that they are very much ready since the school has a well-designed training program on the different skills that are needed by the industry; there is a professional trainer for every skill who prepares students for a lifelong learning; the school preparation contributes to the creation of better systems for skills development; provide progressive discipline plans for students by creating a safe educational environment; and stimulates learning and enhances decision-making process for the senior high school students. They are slightly ready on the school supports and services for the students on the different field of specialization related to industry. On the other hand the Bread and Pastry (BPP) students state that they are very much ready because of the support and services the school is giving to the students on the different fields of specialization related to industry; there is a well-designed training program on the different skills that are needed by the industry; the school's preparation contributes to the creation of better systems for skills development; there is a professional trainer for every skill and the school stimulates learning and enhances decision-making process for the senior high school students. For the Computer Programming students they indicated that they were ready since the school has supports and services for the students on the different field of specialization related to industry; there is a professional trainer for every skill; there is sufficient funding for the school to be able to develop programs for industry/work immersion; the school prepared the students for a lifelong learning; appropriate facilities and aids used in teaching the different skills; the students have strong time management skills; school's preparation contributes to the creation of better systems for skills development; provide progressive discipline plans for students by creating a safe educational environment and stimulates learning.
and enhance decision-making process for the senior high school students. Students of Electrical Installation and Maintenance (EIM) stated that they are very much ready since the school has supports and services for the students on the different fields of specialization related to industry; there is a well-designed training program on the different skills that are needed by the industry; there is a professional trainer for every skill; there is sufficient funding for the school to be able to develop programs for industry immersion; the school prepared the students for a lifelong learning; the students have strong time management skills; the schools' preparation contributes to the creation of better systems for skills development and provides progressive discipline plans for students by creating a safe educational environment; the school stimulates learning and enhance decision-making process for the senior high school students. The EPAS students were moderately ready for the industry/work immersion, having all items obtained a mean with a verbal description as moderately ready with a mean ranging from 3.39 to 2.60. The FBS students stated that they were very much ready because the school has appropriate facilities and aids used in teaching the different skills; the schools' preparation contributes to the creation of better systems for skills development; it has supports and services for the students on the different fields of specialization related to industry; there is a well-designed training program on the different skills that are needed by the industry; there is a professional trainer for every skill; there is sufficient funding for the school to be able to develop programs for industry immersion; the school prepared the students for a lifelong learning; it has appropriate facilities and aids used in teaching the different skills; the schools' preparation contributes to the creation of better systems for skills development; it provides progressive discipline plans for students by creating a safe educational environment; it stimulates learning and enhance decision-making process for the senior high school students. The summary on the readiness of the students on the different skills. As presented on the table the 18 different skills obtained a general weighted mean of 3.37 with a verbal description of moderately ready. This mean indicated that generally the students have a moderate readiness on the industry/work immersion, This further indicates that they have at least 55 to 40% proficiency level on the different skills training. Specifically the students with specialization on Humanities and Social Sciences -HUMMS; Bread and Pastry Production - BPP (A); Bread and Pastry Production - BPP (B); Shielded Metal Arc Welding SMAW (A) indicated that they were very much ready because the school has supports and services for the students on the different fields of specialization related to industry; there is a professional trainer for every skill; there is sufficient funding for the school to be able to develop programs for industry immersion; the school prepared the students for a lifelong learning; the students have strong time management skills; the schools' preparation contributes to the creation of better systems for skills development; it provides progressive discipline plans for students by creating a safe educational environment; it stimulates learning and enhance decision-making process for the senior high school students. Students specializing on

Table 6. Summary on The Readiness of The Students on The Different Skills:
Production BPP (B); Computer Programming (C); Computer Programming (E); EIM; Food and Beverage Services FBS (A); Shielded Metal Arc Welding -SMAW (A) And Tailoring were very much ready for the industry/work immersion. On the other hand, students with specialization on Accountancy and Business Management - ABM (BF); ABM (BM); Animation; Automotive; Computer Programming (A); Computer Programming (B); Electronic Products Assembly and Servicing- EPAS And SMAW (B) have moderate readiness for industry/work immersion.

Conclusions: The overall perception of the students from different specialized courses towards industry immersion, majority of the students indicated that they were moderately ready for industry immersion which were perceived by 61.92%. On attitude and values readiness of the students of Tanza National High School, the value of being patience rank first followed by the attitude of having good common sense, the third is good listening skills which; the fourth is the attitude of passion for improvement and the fifth is the attitude of having the desire to continue learning or to learn new skills while improving the old one. Relative to the skill preparation of the students, majority of the students indicated that the school have prepared them for the work immersion. They have competent teachers to teach them on the different skills needed in the industry. The schools' preparation since contained on their teaching contributes to the creation of better systems for skills development. The school also provides progressive discipline plans for students by creating a safe educational environment at the same time stimulates learning and enhance decision-making process for the senior high school students.

Recommendations: Based on the findings of the study the following recommendations are suggested:

1. Since the overall perception of the students is that they are moderately ready for the work immersion, the school must intensify the preparation of the different skills by hiring competent teachers or by sending them to intense training in the different industries.

2. Skills training on ABM (BF); ABM (BM); Animation; Automotive Servicing (A); Computer Programming (A); Computer Programming (B); Electronic Product Assembly and Servicing (EPAS) and shielded Metal Arc Welding (SMAW) (B) must be improved.

3. The school finance management must provide additional budget on the growth, development and training of different skills.

References:
DepEd Order 40 s. 2012
DepEd Order 30 s. 2017
https://www.ncsu.edu/grad/psm/docs/Borbye IndustryImmersionLearning_global(2).pdf
http://www.nwlink.com/~donclark/learning/ska.html
http://www.nwlink.com/~donclark/learning/learning outcomes.html
http://www.rp.edu.sg/5._Industry_Immersion_Programme.aspx